LA-UR-79-241

o+

TITLE:

MASTER

FERMION HAMILTONIANS WITH MONOPOLE AND QUADRUPOLE PAIRING

AUTHOR(S): J. N, Ginocchio

SUBMITTED TO: coutributed to the 1978 Erice Workshop on

Interacting Bosons in Nuclear Physics
" and tc be published in
"Inter ting Bosons in Nuclear Physics"

Plenum Press (January 1979)

e e s NOTIGE e s
(Hm epart wus prepured sy oan accouat of  wark
sponsated by the United States Governiment Nenher e |
United States nor the Eted States: Department ot |
Foerp . nor aoy ol then employees, nar any of their |
cantracton, subeontracton, v their empluyees, makes
MY WA, express of tiplied, or asames any Jegal
hahrhits oo cespansihility £ the aocuracy, congrete e
v uselulrass bt any inlornalein, apparatus, product or
process diclosed, or representy that sy vae would wot
[ watringe pivately owned nights

By uacceptance of this article for publicution, the
publisher recognizes the Government’s (license) rights
in any copyright und the Government and its authorized
representatives have unrestricted right to reproduce in
whole or in part sald article under any copyright
secured by the publisher.

The Los Alamos Scientific Luboratory requests that the
publisher identify this article as work periormed under
the auspices of the USERDA.

scientific laboratory

of the University of California .
LOS ALAMOS, NEW MEXICO 87545 .

/

An Affirmative Action/Equal Opportunity Employer

Form No ®ib
St Noo2imm
1/h

UNITED STATENS
ENFRGY RESEARCH AND
DEVELOPMENT ADMININTRATION
CONTRACT W00 ENG. 36


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


ABSTRACT
Shell model Hamiltonians which have a set of elgenstates made up
of only monopole and quadrupole pairs are preseunted. These Hamlltonians
have many other types of states as well. The subspace of states made
up of monopole and quadrupole pairs have a one-to-one correspondence
to states made up of monopole and quadrupcle besons. Some properties

of these Hamiltonians are discussed.



FERMION HAMILTONIANS WITH MONOPOLE AND QUADRUPOLE PAIRING*

J. N. Ginocchio
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INTRODUCTION

In this workshop we have seen evidence that the interacting
boson model (IBM) seems to provide a unified phenomenological model
of vibrational, transitional, and rotational nuclei. The underly-
ing concept of this model is that the low-lying collective states
of heavy nuclei are made up of monopole and quadrupole Bosons At
and 4! bosons where p = -2,-1,0,1,2. These bosons can be interpre-
ted to represent correlated pairs of valence nucleons outside the
closed core. Hence a natural view of the IBM is that 1t is an
approximation to the complicated shell model description of these
heav, nuclei. That is, the valence nucleons move in an average
field and the residual interactions produce correlated monopole,
St, and quadrup-le, Dy » pairs of valence nucleons. The collective
low-lying states are then comprised mostly of these pairs, and the
effect of the many other more complicated states is mainly to
rtenormalize the shell model Hamiltonian and transi¢ion operators.

Given this viewpoint it 1s natural to ask the question: Are
there shell model Hamiltonians which will have a class of eigen-
states made up only of monopole and quadrupole pairs? The answer
to the question is yes, and I shall discuss examples of such Hamil-
tonians in this talk. Of course these Hamiltonians will be model
Hamlltonians in the same sense that the famous pairing Hamlltonlan
with degenerate single-particle energies is a model Hamiltonian.
Nevertheless these models can be very instructive for understanding
the mleroscopic structure of the IBM and also may provide insight
on how more realistic shell model Hamiltonlans may provide eigen-

*Work supported by the Department of Energy.
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states made up primarily of monopole and quadrupole pairs.

DISCUSSION

The monopole and quadrupole pair operators will be linear
combinations of nucleon pairs in spherical shell model orbits
labeled by angular momentum j and prcjection m:
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where A.j creates a nucleon in orbit (j,m) and the brackets [ E
mean thdt these operatorz are coupled to angular momentum .J and
projection M,

..l..
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where (jmj'm"jj'Ju) is a Clebsch-Gordon coefficient.

We consider a shell model Hamiltonian H which has a spherical
average one-body field h and a two-body interaction v between
valence nucleons:

n n

= 2 b3
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(2)
where n is the number of valence nucleons. We are interested in
such Hamiltonians which have a class of eigenstates which arc linear
combination of the states made up of monopole and quadrupole nucleon

pairs: R N_Nd . Nd ]

[N NyYIM) = (s ) nd O >, (3a)
where

N =%n , (3b)

and N, is the number of quadrupole pairs. These quadrupole pairs

are coupled to angular nomentum J and projection M, and Yy refers to
any additional quantum numbers which may be nuc$ssary. We refer to
the space spanned by the states in (3) by (ST,I)“)N for convenience.

The -ccessary and sufficient conditions that a shell model
Hamlltonian have a class of eigoenstates in the (S+,D“)N space are
an cxtension of those given by Talmi for generallzed senlority™?
Une set of conditlons is that the pair operators (1) create lwo-
nucleon states which are elgeustates of 1,
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where |0 ) represents the core ol A-n nucleons, where A is the total
number of nucleons in tha nucleus.

Another set of conditions is that the double commentators of
the pair operators give back the pair operators:
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These conditions are very restrictive. One way to satisfy them
is by means of group theory. Since the pair creation operators span
a six-dimensional space we lock for groups which have a six-dimern-~
sional irreducible representation which contain states with angular
momentum zero and two. There are only three such groups, SU,, SO
and SU6' If we then 1nclude single-particle levels which fit into
representations of one of these groups, we can then construct an H
which is Invariant with respect to the group, and hence the condi-
tions (4) and (5) must bte satisfied. However of the three groups,
only one has representations which have angular momenta corresponding
to single-nucleon _angular momenta. This group is the SO, group.

In a recent paper-” we considered a particular exemple of this method
which corresponded to valence nucleons filling the (1p, Of) major
shell. Other examples corresponding to other shells can be
constructed as well.

This method restricts the possible single-particle angular
momenta that are allowed. There is another method to obtain solu-
tions which Is less restrictive. We will not go into the details
of this method, which will be explalred in a forthcoming paper, but
just give the solutlon.

For this solution the single-particle orbitals are degenerate
in encrgy, as 1s the case for the exactly soluble pailring model.
This feature may not be a scvere handicap becausce for wmany valence
nucleons the two-body interactions will be more important than the
slngle-particle energies.



Furthermore for this solution the single-particle orbitals
will come in groups with all j between the limits,

3 . 3
k+ 523 Z_|k—5|, (6)

being necessary. Here k is any integer. We note that tor k=1, the
orbitals are those of the (1s,0d) major shell, and for k=2, of the
(lp,Of) major shell. Different combinations of orbitals may be
taken, as long as the k's differ by four, so that a particular
angular momentum does not cccur more than once. We don't feel that
this grouping has any deep physical meaning but is just a peculiarity
of the model. What 1s significant is that, except for the trivial
case of k=0 (j=3/2 only), many therical orhitals are needed to

have a decoupling of the (S ,D+) space from the other complicated
states.

A set of Hamiltonians which are solutions of equations (4) and
(5) and hence have this decoupling feature is given by.

3
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where S 1is the usuai pairing mode,
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the quadrupole pairing mode is,
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where . . 2is the Wigner 6-j symbnl and,
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and 2 1s onc-half of the total occupancy of the shell
Q =k Ej(2j+l) = 2(2k+1) . (8d)

These palring modes are normalized so that they create a normalized
two-nucleon state,
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The multipole operators are piven by
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with

" B j+m

A = (-1) A n (9b)
The integer k 1s the same as mentioned in (6). The multipole
operator of zero rank is just the fermion valence number operator

PC = n (9¢)
. + TN ,
and, for the states within the (S5 ,D ) space, the dipole operator
is proportional to the angular momentum operator.

- Because of the wultipole interactions the energy diffcrence for
the two nucleon spectrum is given by
. 6(b;-b,)
-— = —_ I'4 - - - =
E2 E0 E2 EO + 4\b3 b2) + 5 . (10)
These solutions have a very important feature. The set of
states glven in (3) have a one-to-one correspondence to the boson
basis,
N-N + Nd

N Ny, = uwh 4« Yy 103 (11)

B
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and all tte states are Pauli allowed for N 5_53 For N, > —,
instead of valence particles, the one-to-une correspondence Is
between valence holes. This is consistent with the assumption of
the IBM that for the number of valence nuclcecons greater than the
half-filled shell the bosons represent the creation of a pair of
holes in the full shell.

The eigenvalues of the Hamiltonian in (7) depend on the parame-
ters of the Hamiltonian and in general need to be solved for numer-
ically. However for special values of the parameters there are
analytical expressions for the eigenvalues. One interesting case
occurs when the quadrupole pairing and quadrupole-quadrupole
interaction are related by

T =

£y sz (12a)
In that 1lirit nucleon scniority, v, is+a &ogd quantum aumber and
the eigenspectrum for states in the (S ,D')" space is that of an
anharmonic vibrator. The eigenspectrum is given by
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The allowed values of seniority are limited by the total number
of valence nucleons:

v=0,2,..., 2N ; N < %0 (13a)
v=0,2,...,2(Q-N); N > 0 (13b)

The first term in the eigenvalue spectrum (12) is just the pairing
interaction and gives the main vibrational spectrum which is harmonic
in v for low v. For large v this energy difference between levels
decreases due to a Pauli correction.

The next terms in (12) split the degeneracy of the harmonic
spectrum. The eigenvalue T is the number of quadrupole operators
which are not coupled to zero. The allowed values are

T =%, Y(v-4),..., 1 or O. (14)

For each T the allowed angular momenta are determined by partition-
ing T as

T = BnA + A (15)
where n, and A are any positive integers. The allowed angular
momenta for a given T and n, is

J = A,A+1,...,2x=2,2]. (16)

Hence the alivwed eigenvalues are the same as given by Arima and
Iachello™ for the vibrational limit of the IBM.

In Fig. 1 we show a schematic representation of the vibrational
spectrum given in (12), for v < 6 which illustrates the roles of the
three terms in (12). The detailed ordering of the levels will
depend on the details of the parameters and could differ from that
Blven in Fig. 1.

Furthermore if we assume that the electric quadrupole operator
is proportional to the quadrupole multipole operator given in (9a),
q = x P2 ar)
q q
then it follows that the matrix elements of Q between any states
with the same seniority is exactly zero:
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Fig. 1 A schematic representation of the vibrational spectrum of
equation (12) for the lowest seniorities (v < 6).



(NvT' J'N qu[NvTJM) =0 . (18)

This means that all quadrupole moments vanish and there are no BE2
tranzicions between states in thc same seniority multiplet, only
transitions between seniority multiplets. Hence this gives the
selection rules of the extreme vibrational limit.

Another 1imit which has an analytical solution occurs when the
monopole and quadrupole pairing are equal:

T =FE, . (19)

This gives a solution which has S50, symmetry. We note from (10)
that this condition doesn't mean that the J=0 and J=2 two-nucleon
states are degenerate. We will discuss this limit in a future paper.

The reali_tic case will be somewhere between the vibrational and
S0, limits, and has to be solved numerically. However even for these
cases T, J, and M will be conserved quantum numbers. The seniority
v will be the only quantum number broken by the Hamiltonian in (7).

We want to emphasize that the Hami%tonian in (7) has a large
number of eigenstates not in the (S',D )N space. In fact this
space is only a very tinv part of the entire shell model space.
For n=2N nucleons, the tctal number of states is given by the
binomial factor

(2
' (2N> (20)

+ .
However, the total number of states in the (S ,D )N space is

= _[v+5
fh —(—5) . (21a)

where

N = N for N < Q/2 (21b)
and

N = Q-N for N > Q/2 (21¢)

Therefore, for Q,ﬁ-large, tke ratio is

N m-2NIn2 -0+ (222)
5 = e 2 5
N

which is very small for E-large, since

2Q-N) > N (22b)



for all values of N. Hence if only the (S+,D+)N space is playing
a vital role in the collective low-lying states of real nuclei, the
IBM does provide a very substantial reduction in the complexity of
the shell model calculation of these states.

CONCLUSION

We have shown that there exists fermion Hamiltonians which
decouple states containing monopole and quadrupole pairs from the
rest of the spectrum. These iHamiltonians have both a vibrational
(good seniority) and an SOg limit depending on the parameters of
the Hamiltonian.

We have only discussed identical nucleons in this paper. Of
course the properties of the transitional and rotational nuclei
depend crucially on the interaction between protons and neutxrons.
We will be= cble to study this aspect as well by introducing proton-
neutron interactions into the Hamiltonians of equation (7). We
can also study the effect of the co pliné of the other states on
the spectra of the states in the (S',D') By magping H onto a
boson Hamiltonian Hy which is active in the (A+,d )N boson space,
we can stidy the effect of the Pauli principle and the effect of
the states not in the (ST,D+) space on the renormalization of the
boson Hamiltonian. We also will be able to study the coupling of
a single-nucleon to the (S',D )N space and hence study odd nuclei
as well. Thus by studying these, albeit schematic, fermion Hamil-
tonians we can perhaps understand the success of the phenomenolog-
ical interacting boson model in describing real nuclei.
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